This run was done on: Sun Jul 28 21:20:01 EDT 2013 HPL.dat: -------- HPLinpack benchmark input file Innovative Computing Laboratory, University of Tennessee HPL.out output file name (if any) 6 device out (6=stdout,7=stderr,file) 1 # of problems sizes (N) 58800 Ns 1 # of NBs 200 NBs 0 PMAP process mapping (0=Row-,1=Column-major) 1 # of process grids (P x Q) 2 Ps 2 Qs 16.0 threshold 1 # of panel fact 2 PFACTs (0=left, 1=Crout, 2=Right) 1 # of recursive stopping criterium 4 NBMINs (>= 1) 1 # of panels in recursion 2 NDIVs 1 # of recursive panel fact. 1 RFACTs (0=left, 1=Crout, 2=Right) 1 # of broadcast 1 BCASTs (0=1rg,1=1rM,2=2rg,3=2rM,4=Lng,5=LnM) 1 # of lookahead depth 0 DEPTHs (>=0) 0 SWAP (0=bin-exch,1=long,2=mix) 64 swapping threshold 0 L1 in (0=transposed,1=no-transposed) form 0 U in (0=transposed,1=no-transposed) form 1 Equilibration (0=no,1=yes) 8 memory alignment in double (> 0) Actual run: ----------- ================================================================================ HPLinpack 2.0 -- High-Performance Linpack benchmark -- September 10, 2008 Written by A. Petitet and R. Clint Whaley, Innovative Computing Laboratory, UTK Modified by Piotr Luszczek, Innovative Computing Laboratory, UTK Modified by Julien Langou, University of Colorado Denver ================================================================================ An explanation of the input/output parameters follows: T/V : Wall time / encoded variant. N : The order of the coefficient matrix A. NB : The partitioning blocking factor. P : The number of process rows. Q : The number of process columns. Time : Time in seconds to solve the linear system. Gflops : Rate of execution for solving the linear system. The following parameter values will be used: N : 58800 NB : 200 PMAP : Row-major process mapping P : 2 Q : 2 PFACT : Right NBMIN : 4 NDIV : 2 RFACT : Crout BCAST : 1ringM DEPTH : 0 SWAP : Binary-exchange L1 : transposed form U : transposed form EQUIL : yes ALIGN : 8 double precision words -------------------------------------------------------------------------------- - The matrix A is randomly generated for each test. - The following scaled residual check will be computed: ||Ax-b||_oo / ( eps * ( || x ||_oo * || A ||_oo + || b ||_oo ) * N ) - The relative machine precision (eps) is taken to be 2.220446e-16 - Computational tests pass if scaled residuals are less than 16.0 ================================================================================ T/V N NB P Q Time Gflops -------------------------------------------------------------------------------- WR01C2R4 58800 200 2 2 528.63 2.564e+02 -------------------------------------------------------------------------------- ||Ax-b||_oo/(eps*(||A||_oo*||x||_oo+||b||_oo)*N)= 0.0021295 ...... PASSED ================================================================================ Finished 1 tests with the following results: 1 tests completed and passed residual checks, 0 tests completed and failed residual checks, 0 tests skipped because of illegal input values. -------------------------------------------------------------------------------- End of Tests. ================================================================================ Done: Sun Jul 28 21:29:25 EDT 2013